Investigation of Urban Air Temperature and Humidity Patterns during Extreme Heat Conditions Using Satellite-Derived Data
نویسندگان
چکیده
Extreme heat is a leading cause of weather-related human mortality. The urban heat island (UHI) can magnify heat exposure in metropolitan areas. This study investigates the ability of a new MODIS-retrieved near-surface air temperature and humidity dataset to depict urban heat patterns over metropolitan Chicago, Illinois, during June–August 2003–13 under clear-sky conditions. A self-organizing mapping (SOM) technique is used to cluster air temperature data into six predominant patterns. The hottest heat patterns from the SOM analysis are compared with the 11-summer median conditions using the urban heat island curve (UHIC). The UHIC shows the relationship between air temperature (and dewpoint temperature) and urban land-use fraction. It is found that during these hottest events 1) the air temperature and dewpoint temperature over the study area increase most during nighttime, by at least 4K relative to the median conditions; 2) the urban–rural temperature/humidity gradient is decreased as a result of larger temperature and humidity increases over the areas with greater vegetation fraction than over those with greater urban fraction; and 3) heat patterns grow more rapidly leading up to the events, followed by a slower return to normal conditions afterward. This research provides an alternate way to investigate the spatiotemporal characteristics of the UHI, using a satellite remote sensing perspective on air temperature and humidity. The technique has potential to be applied to cities globally and provides a climatological perspective on extreme heat that complements the many case studies of individual events.
منابع مشابه
An investigation of heat and mass transfer enhancement of air dehumidification with addition of γ-Al2O3 nano-particles to liquid desiccant
This study introduces an experimental and theoretical investigation of the performance of a proposed air dehumidification system using a nanofluid of γ-alumina nano-particles in LiBr/H2O as a desiccant. Comparative experiments organized using a central composite design were carried out to evaluate the effects of six numerical factors (air velocity, desiccant flow rate, air humidity ratio, desic...
متن کاملImpact of Airflow on Moderating Thermal Conditions in Vernacular Houses; Case Study: Bandar-e Lengeh Houses in Hot and Humid Climate of Iran
As an example of extreme hot humid climate, the southern marginal rim of Iran is a perfect candidate for studying climatic patterns. Attention to climatic components in housing design process within this area is therefore essential. Benefitting from the airflow and avoiding heat and radiation are among the most effective approaches towards moderating heat conditions in hot and humid areas. ...
متن کاملInvestigation of the effects of Covid-19 pandemic on UHI in urban, industrial and green spaces of Tehran
Investigation of the effects of Covid-19 pandemic on UHI in residential, industrial and green spaces of Tehran Abstract Rapid urbanization in recent decades has been a major driver of ecosystems and environmental degradation, including changes in agricultural land use and forests. Urbanization is rapidly transforming ecosystems into buildings that increase heat storage capacity. Loss of ve...
متن کاملEffect of Vegetation Cover on Energy Consumption Optimization due to Reduction of Urban Heat Island intensity: Case of Tehran Metropolitan Area
Urbanization through rapid constructions, is the main cause of high heat absorption in urban centers. In addition, the accumulation of heat energy resulted by removal of vegetation cover, has contributed to formation of urban heat islands (UHIs). The spatial distribution of heat intensity in Tehran Metropolitan Area was studied, and the influence of land use and green cover were analyzed in the...
متن کاملEffect of Vegetation Cover on Energy Consumption Optimization due to Reduction of Urban Heat Island intensity: Case of Tehran Metropolitan Area
Urbanization through rapid constructions, is the main cause of high heat absorption in urban centers. In addition, the accumulation of heat energy resulted by removal of vegetation cover, has contributed to formation of urban heat islands (UHIs). The spatial distribution of heat intensity in Tehran Metropolitan Area was studied, and the influence of land use and green cover were analyzed in the...
متن کامل